

Complete Global Coverage

THE WORLD'S LARGEST COMERCIALLY AVAILABLE COMPREHENSIVE GROUND CONTROL POINT DATA SET.

Approximately 18,000 photo identifiable Ground Control Points off the shelf and growing into...

Options

Terrestrial GCP

TerraSAR-X Background

- TerraSAR-X capabilities: High resolution, multi-beam image acquisition
- Along with the image data, detailed and very precise metadata are provided
- Image position error of 0.3 m in range and 0.5 m in azimuth is proven
- → high accurate 3D information extraction using stereo or multiple image data sets.

Multi-beam imaging scheme of TerraSAR-X (Ascending and Descending)

Possible TerraSAR-X GCP-1 AOI

All the space you need

ASTRIUM

Possible TerraSAR-X GCP-2 AOI

ASTRIUM

TerraSAR-X GCP delivery package

- Using stereo or multiple image data sets lead to high accurate 3D information extraction
 - GCP-1 accuracy: based on min. 3 HS scenes, up to 5 GCPs with up to 1m accuracy in an area of 20 km²
 - GCP-2 accuracy: based on min. 3 scenes (SM and SL), up to 8 GCPs within up to 2m accuracy in an area up to 100 km²
 - GCP-3 accuracy: based on min. 3 SM acquisitions, up to 10 GCPs with up to 3m accuracy in an area up to 1000 km²
- Delivery with a comprehensive package typically within 4 weeks after order confirmation
 - X, Y, Z coordinates of the GCPs.
 - Radar image chip of the surroundings (500x500m area),
 - Verbal description of each GCP and
 - Compressive statistics
 - A corresponding .kml-file

To ensure accuracy of the RSGCPs; field tests were performed in:

Morrison, CO: RSGCP-1

Phoenix, AZ: RSGCP-2 and 3

Centennial Airport, CO: RSGCP-3

RSGCP Accuracy Field Testing

GPS Observation

The perfect RADAR reflector

What features are visible in the TerraSAR-X data?

Example 1: Coarseness differences

Example 2: Coarseness differences and strong reflectors

Example 3: Strong reflectors (permanent scatterers)

The perfect reflectors cause a very high and concentrated signal in the SAR images.

1 large reflector 2 small reflectors Many poles

Tetherball-poles and the random small reflectors.

Comparison of 'perfect' corner-reflectors versus ground GPS measurements (in Meters):

Object description	Am	Hmax	Vmax	Hmean	Vmean
Large aluminum reflectors	ount 4	0.53	-0.46	0.39	-0.46
Small metal reflectors	3	0.54	-0.62	0.42	-0.55

3.0

Comparison of real features versus ground GPS measurements (in Meters):

Features	Am oun t	HMax	VMax	HMean	VMean
Steel light-poles	5	0.82	-0.59	0.56	-0.37
Electric tower-leg	5	2.04	-0.88	1.22	-0.50
Finished surfaces	6	2.01	-0.65	1.11	-0.46
Traffic islands	2	1.22	-0.60	0.93	-0.36
Boulder	1	1.31	-1.00	1.31	-1.00

3.0

2.0

THE RIGHT CHOICE OF FEATURE PROVIDES THE OPTIMAL RESULT

The research showed that the right choice for a feature is the key for an optimal RSGCP result. The feature must fulfill two different requirements:

- First, the feature has to be identifiable in the multi-spectral or panchromatic scene of an optical sensor.
- Second, the feature must be identifiable in the radiometric imagery.

Therefore, the feature must possess a distinct reflectivity within its surrounding.

Results

- Elevations have a very constant accuracy without any outlier
- The effort on the horizontal component has to be greater, especially for a flat feature defined by a change in coarseness
- Loose gravel or dirt usually collects on the edges and borders along finished surfaces due to wind and rain. A minor amount could impact the radiometric image, but might not even be visible in the optical image, causing an unwanted offset
- Vertical standing metal poles, if available and if visible in the optical image, are better
- Alternatively to using a single pole as a point-feature is the base of the steel towers for power-lines, which are often visible in optical imagery
- The test results show a horizontal accuracy of 1.0 m and a vertical accuracy of 0.5 m. A closer look at these accuracies show horizontal and vertical systematic shifts of approximately 0.5 m. Therefore the relative accuracy is within a few decimeters.

Opportunities

- 1m to 3m control anywhere on the Planet
- Fill in the gaps to build a seamless image coverage of the Globe
- Provide control to enhance elevation models
- Check points for QA and Calibration

